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While a minerity of statisticians hew to the Bayesian line, a large
number of philosophers and a large number of Al researchers

take Bayesian conditionalization for granted as the only way of
updating uncertainties. At the same time, 2verybedy, Bayesian
or not, appears to accept the fundamental principle of direct
inference. 1if you know the statistics, the statistics sheuld
constrain your belief  The contribution of this paper 13 to exhibit
a conflict between these two principles, and to argue in favor of

direct inference and against conditionalization. _12896
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Against Conditional Probability

1. ac U

If there 1s any distinction 1n the realm of statistics or
inductive logic or the manipulation of uncertainty that deserves
to be called “classical”, it is the distinction between direct and
inverse inference.

Direct inference includes among its premises some
statement of statistical distribution, or relative frequency, or
chance, and concludes with a statement of probability concerning
a sample or a single case. From 50% of coin—tosses yield heads,
In the absence of countervailing arguments, we czonclude that the
probability is 0.5 that the next toss will yield heads.

Inverse inference takes as its premise: z staternent of
sample statistics concerning a sampie from a porpulaticn, together
with some cther premises, and concludes with a staterment of
statistical distribution, or relative frequency, ¢or chance,
applicable to the population as a whele.

Both direct and inverse inference are characterized by
nonmonotonicity. Adding to the premises may undermine a
conclusion in either case. This was recognized exphcitly by R. A
Fisher [1936, p 254]: "There is one peculiarity of uncertain
inference which often presents a difficulty to mathematicians

trained only in the technique of rigorous deductive argument,




namely that our cenclusions are arbitrary, and theretore invalid,

unless all the data, exhaustively, are taken into account In
rigorous deductive reasoning we may make any selection frem
the data, and any certain conclusions which may be deduced
from this selection will be valid, whatever additicnal data we
have at our dispcsal " Even so, direct inference has been
regarded as relatively unproblematic.

Glven as a premise that the chance of heads on the toss
of a coin 1s a half, we confidently say that the probability of
heads on the first toss 1s a half Given a further premise to the
effect that three of the first four tosses yielded heads, we

recompute the probability of heads on the first oss to be 3/4

Bayves Theorem

Inverse inference has cfter teen asscciatzd -with Bayes
thecremr  For example, one way of getting at the parameter o
characterizing the proportion of black balls in an urn 15 to draw
a sample, and to apply Bayes' thecrem Bayes' theorem,

however, requires as input a prior distribution for the parameter

£, which may be difficult to justify in terms of frequencies or

n For
chances. Thus Jerzy Neyman, another founding father of A2l 0
modern statistics, writes [Neyman, 1957 p. 7] " . persons who -°¢ 0O
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would like to deal only with classical probabilities, having their

counterparts in the really observable frequencies, are forced to ton/ ‘
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look for a solution of the problem of estimation other than by
means of the thecrem of Bayes " This :s not to say that Bayes
theorem is never appiicable. As R A Fisher saw clearly, there
are many situations in which Bayes' thecrem can easily be
construed in terms of direct inference In (Fisher, [1930]) he
notes that drawing from a super-populaticn in which the
parameter of Interest (say 2 ) has a known distribution, and
then getting a posterior distributien for p, “ . is a perfectly
direct argument. " For inverse inference proper -- that Is,
inference whose uncertainty is no¢ based cn known frequencies,
but on subjective prcbabilities -- Fisher has nothing but
contempt [1930] "In fact, the argument run: somewhat as
follows a number of useful but uncertain judgments can be
expressed with exactitude in terms of probability; our judgments
respecting causes ¢r hypotheses are uncersain, therefore cur
rational attitude towards them is expressible in terms of
probability  Neyman's attitude i1s even less tolerant

Fisher and Neyman were reacting against the use of the
so—-called axiom of Bayes that stipulated the use of uniferm
priors. Their goal, which has informed meost of medern
statistical practise, was to do without priors. Since their day,
however, inverse inference proper has become (almest)
respectable again. This is particularly so in philosophy, in which

inductive inference is often supposed to take place only by means




of Bayes' theorem, and in Al, in which the updating or
modification of uncertainty 1s assumed ¢ take place only by
means of conditionalization [ claim that there 1s a sericus
conflict between direct inference and inverse inference proper --—
that 15, the use of conditicnalizatien  Since the criginal point cf
iInverse inference was to serve the interest of direct inference by
providing statistical premises, we should hold onte direct inference
and abandon conditionalization except in those cases {which are

many) in which 1t can be reduced to direct inference.

5. Direct Inference.

Direct inference has always seemed sz obwious, that
amost nobody has made a serious attempt to raduce it to rules.
(Reichenbach [1949] is an excepticn, my contrasting view
appearad in [1961] ) Two simple rules will suffice for cur
purpeses here, they are the difference rule and the strength
rule. Essentially, they are rules for choosing a reference class

We will generalize the notionn of probability very shghtly
to accomodate the obvious fact that we don't know most general
frequencies or distributions exactly, we will therefore represent
both probabilities and our knowledge of frequencies by intervals.
We will say that two intervals Jiffer if they are not identical and
neither 1s included in the other. If one is included in the other

we will say that it is stronger than the other.
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The difference rule says that if Y4 have two possible

reference classes, and they are characterized by different
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frequer:cy intervals, then, if one reference clas: i3 inzluded in
.

other, 1t may be the right reference class, but if neither 1s
included in the other we may have to look elsewhere for a
reference class  Thus if you knew of a card that it :s black, the
probability that it 15 a spade 15 determined by the freguency ¢
spades among black cards, net among cards in general

The strength rule says that if you have two possible
refererice classes, and neither is ruied out as a reference class by
differing from some other reference class, then the one about
which our statistical knowledge 15 stronger is the better reference
class  As an extreme example, [ know that th:z frequency of
heads in the se* of tosses consicting of the singletsn <f *he next
0ss 15 in the closed 1nterval [0,1], and that's all | krnow about
it But ! know that among coin-tosses n general, heads cccur
with 2 frequency very close to a half It is the latter that
constitutes a better reference class.

This characterization of direct inference leaves ocut a
number of important aspects, but they are not essent:a! for our

purposes here. Details can be found in [1983]

4 Ezample !

Here 1s an example in which the conflict between direct




inference and conditionalizaticn: comes out clearly

Suppose that we are running a factory, and we use a
certain type of instrument to test our product The
manufacturer of the instruments certifies on the basis of
extensive testing, that his instruments are subject t¢c error
greater than ¢ exactly 20% of the time. Of course we
understand “exactly 20%" to mean very close to 20%. We have
no reason to doubt this report.

Pick an 1tem off the assembly line  Test it with the
instrument. The probabilty that the true value is within e of the
reading is clearly 20. This is just direct inference, making use
of the fact that we know the frequency of errcrs of magnitude e

Now let us suppose that we seem to notice that some
instruments are more accurate than cthers Tf course that is
bound to be the case, and dces riot impugn the manufacturer's
ciaim that the error rate 1s 20%  We are inspired t¢ lock inte
the matter more deeply: we ncte that the instruments are
inspected by three different inspectors, A, B, and C.  We form
the hypothesis that the accuracy of the instrument is related to
the identity of the inspector whe passed 1t We take a sample of
400 each of readings made on each kind of instrument, and
compare the readings made by our super-accurate-tester

The number of readings in error by more than e, and

the ratio of such readings to the total number, is presented in




the following table

type trials errors rate
A 400 108 270
B2 400 g2 130
C 400 70 178

We may also compute ratios in broader classes from the same

data:
Ay B 200 160 200
ApC 800 178 222%
BUC 80C 122 1828
AUBUC 1200 230 1917

What do we do with this data? Well, we can use
direct inference to draw conclusions about the gereral
measurements A, B, and C, and their combinat:iens Taking 9%

as an acceptance level, we ncte that tha® correspernds ‘o + 2
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case we carn disregard the difference between the bincmial and
the normal distribution. The mean of the differernce between the
sample mean and the population mean s &  We thus ge* the
following confidence intervals for the error rates in the classes

tested:




8
deviation
A 400 040 [ 2320, 310]
B 400 040 (090, 170]
C 400 040 [ 135, 215]
AUB 800 028 (172, 228]
AUC 800 028 [ 194, 251]
BUC 800 028 [ 124, 181]
AVUBUC 1200 023 [ 169, 215]

Assume that the sampling procedures leave nothing to be desired.
Note that our results do not impugn the manuiacturer's claim

that the relative frequency of errors is .20 At the same time,
when we now pick an item from the assembly iine and measure
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it, if we notice that we have an instrument of ty

L4 4

suppose that the probability is [ 23, 31} that the reading s in
error by more than ¢ Similarly, if we use an instrument of
type B, we find the probatkility of this amount ot errcer to be
only [.09, 17]

On the other hand, if we are locking over old records,
and the inspector of the instrument with which a measurement
was made was not recorded, it seems right to use the old
probability of error of .20, Someone ught want to argue that

since we have this new information about AUBUC -- namely,




that the frequency of error 1s between 169 and 215 -- we
should use that interval But why? That deesn't disagree with
the manufacturer’s error frequency, and nc deubt his frequency

1s based on wvastly more informationn than s ours [t e te k
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Just a waste of good informaticn to use our rcugh estimate in
place of his refined one. At any rate, this 15 the ntuiticn on
which the strength rule is based

If these are our intuitions, we must reject
conditionalization in this case. Take the prcbabilities we get from
direct inference tc constrain our degrees cof belief; let cur degrees
of belief be given by a belief functicn BF satisfying the axioms of
probability. Then by cenditionalization and the principle of tota!
probability we have

BF(ElAyBuC) JBF{AyB) =
Since the probahility of E given AygB s 200, b ¢

EIC)BF(C)

ie strength

’T’""l
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rule, and the same 15 true of *he preobability of T aiven AU By”,
and since the prebability of EIC i3 positive, this wdentity can only
be satisfied if BF(C) is 0 Again, by conditionalizaticn and the
principie of total probability we have

BF(EJAU BuC) = BF(EIAUC)BF(AUC) + BF{(EE;BF(B)
so that, by the same argument, we have BF(B) = 0

From this 1t follows that BF{A) = 1, since BF/B) =

BF(C) = 0. So we have BF{EJAUBUC) = BF(EA) ¢ [ 230, 310},

contrary to our assumption that BF was to be constrained by our




prebability intervals

We must give up somethin The princizle =f total
probability 1 hard to give up  every ‘requency function that
apries t¢ the world satishies the principle of total precakbility
But conditicnalization, applied t¢ a telief functicn, describes now
our beliefs are supposed to change in response ts incoming
evidenc And there 1s nothing sacrosanct abcut that  2f course
conditicnalization will apply sometimes !f we knew what
proportion of the measurements were given by each <f the three
types of instruments {so what we had rrobabilities on which ¢
base BF{A), BF(B), and BF{C)) then =f courze we would not
apply the strength rule, but rather an appropriate weighted
average in obtaining BF(EJAVBUC) And this could (and should)

be based on a direct inference

section 15 to insist that once we nave *ested a numkber cf the
measurements made 1n ocur factory, we should use these statistics
for our probabilities And thus, for example, *c use | 149, 21%]
rather than 200 for BF{EIAUBUC) This won't de fzr two
reasons  Suppose we had tested the three types c¢f instruments

and not found any evidence that the expected frequency of errcrs

differed  Surely in that case we would feel free ¢ continue using




the manufacturer's error rate of 200 Furthermore, we always
have very specific statistical infermation concerning the errcr
rate in future measurements Thus | know that the errzr rate
among future measurements made by me using instruments of

1

type A 15 i the interval [0,1]

-

And this 1s probably a% | know
about that class of measurements Surely [ should nect be
required to take the probability of error to be [0,1]

The response of the subjectivist to this sort of example
15 two—fold  First the subjectivist will assert that probaktilities
are belief functions, and that therefore intervals wen't de Given
any measurement performed with an instrument in AyBuC,
BF(A), BF(B), and BF(C) —- the degree of belief that it was
performed with an instrument of type A, B, or C, respectively
-- are all real valued and add up to 1. Similarly, the

conditicnal probability BF{EIA) iz real valued: by the preceding

. 4 e — . 2 ool I U U o % ool el BY A N - ::’/v—l \..:v—_/. N
xind of argument BF(EA) = BFIEA]  Any = < OF DA, <SIaay),
. - PRI +1, - e , ~E - , - crA
where A, i the conditicn that an instrument of type A 13 used

and the error rate of instruments of type A 1s 1n the 1t'th
subinterval of { 230, 310] Naturally, we can make these
subintervals as small as we want So the subjectivist thunks !
can do things that [ don't think [ can deo, hke maling all
probabilities precise

On the other hand, the subjectivist can offer an

independent argument for conditicnalization  Since | have




accepted total probability, if [ can be compelled to accept
conditionalization as well, | shall find myself having to reject
direct inference -- or at least the strength rule The argument
zoes like the standard dutch book arguments for the probability
axioms.  Roughly 1t 15 this if you allow conditicnal kets, but ds
not adjust your beliefs in accordance with the principle of
conditionahization, then your unfriendly bettor will bet on X at
your odds, on X & Y at your odds, and will make a conditicnal
bet on X, conditicnal on the occurrence of ¥, at these odds you
will offer once you have observed ¥  [f you do not obey the
principle of conditionalization, these need nct be the same odds,
and the unfriendly better will be able to win for sure Thus, 1t
1s claimed, the principle of conditionalization has the same degree
of soundness as any other principle of probabilit;

To this | respond that dutch bock arguments are not
very persuasive anyway. it 1s a matier ¢f deductive
self-preservaticn —— and has nothing ¢ do with degrees of kelef
—-— nct to make a set of bets on which vou are bound to lose
money  But it is also not always appropriate te lock at
corditional bets. In the example of the instrument, the numbers
to which T am led seem perfectly reascrnable, even thcugh they
are not consistent with any probabilistic belief function whose

range includes pricr beliefs about which instrument s used

Finally, as cne can see from this kind of example, the




subjectivist requires that the value of the belief function be
determined for all possible future contingencies -- arnd then never
changed (Conditionalization does not invclve a change of the
cazic behef function P'/E) = P(E & A)/PIA}, for examrple, sc
that while one's initial absclute belief functiorn 1= updated, cre s
never allowed to change one's mind )

'n terms of the bock-making metaphor, the bcokie
must post odds or. all possible contingencies, and then take these
odds to determineall his conditional bets, whatever happens,
whatever new evidence there is5, the bockie need merely look up
the correspornding conditional odds in his imitial table He cannot
change his odds [ suggest that this 1s overly rngid. One should,
perhaps rarely, be willing to change ones odds in a fundamental
way. Learning only by conditionalization: implies an excessively
narrow view of learning Where there 1s conflict with direct

N -y~ iy~ . .1 - N -~ . 1 \
nferznce, direst inference cheuld prevail, and conditicnalization

.....




1 This example 1s due essentially to Levi [1977! and
[1980], where 1t is alleged to shcw the incoherence of the

L

strength rule | have profited also from: extensive discussions

with Levi on these matters.
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